2,179 research outputs found

    Plasma-initiated polymerization and its applications

    Get PDF
    Plasma initiated polymerization is discussed. Topics include: polymerization of a vinyl monomer, solid phase polymerization, and inorganic ring compound polymers

    Artificial oxygen carrier: its front line

    Get PDF

    Design and evaluation of pick-up truck mounted boom for elevation of a multiband radiometer system

    Get PDF
    Three concepts were considered for the boom design: a one-piece boom with a trolley, a folding boom, and a telescoping boom. The telescoping boom was selected over the other two concepts because of its easy manual operation. The boom is designed to mount on the bed of a pick-up truck and elevate the radiometer system 8 meters above the ground and 4 meters away from the truck. The selection of the boom components is discussed with justification of the final choice. Results of performance tests and one season's operation of the completed boom are reported

    Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations

    Full text link
    We present a simple and efficient technique in ab initio electronic-structure calculation utilizing real-space double-grid with a high density of grid points in the vicinity of nuclei. This technique promises to greatly reduce the overhead for performing the integrals that involves non-local parts of pseudopotentials, with keeping a high degree of accuracy. Our procedure gives rise to no Pulay forces, unlike other real-space methods using adaptive coordinates. Moreover, we demonstrate the potential power of the method by calculating several properties of atoms and molecules.Comment: 4 pages, 5 figure

    Integrable discretizations of derivative nonlinear Schroedinger equations

    Full text link
    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations.Comment: 24 pages, LaTeX2e (IOP style), final versio

    A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion

    Full text link
    We propose a new method for discretizing the time variable in integrable lattice systems while maintaining the locality of the equations of motion. The method is based on the zero-curvature (Lax pair) representation and the lowest-order "conservation laws". In contrast to the pioneering work of Ablowitz and Ladik, our method allows the auxiliary dependent variables appearing in the stage of time discretization to be expressed locally in terms of the original dependent variables. The time-discretized lattice systems have the same set of conserved quantities and the same structures of the solutions as the continuous-time lattice systems; only the time evolution of the parameters in the solutions that correspond to the angle variables is discretized. The effectiveness of our method is illustrated using examples such as the Toda lattice, the Volterra lattice, the modified Volterra lattice, the Ablowitz-Ladik lattice (an integrable semi-discrete nonlinear Schroedinger system), and the lattice Heisenberg ferromagnet model. For the Volterra lattice and modified Volterra lattice, we also present their ultradiscrete analogues.Comment: 61 pages; (v2)(v3) many minor correction

    Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    Full text link
    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including the first fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc

    One-Dimensional Integrable Spinor BECs Mapped to Matrix Nonlinear Schr\"odinger Equation and Solution of Bogoliubov Equation in These Systems

    Full text link
    In this short note, we construct mappings from one-dimensional integrable spinor BECs to matrix nonlinear Schr\"odinger equation, and solve the Bogoliubov equation of these systems. A map of spin-nn BEC is constructed from the 2n2^n-dimensional spinor representation of irreducible tensor operators of so(2n+1)so(2n+1). Solutions of Bogoliubov equation are obtained with the aid of the theory of squared Jost functions.Comment: 2.1 pages, JPSJ shortnote style. Published version. Note and reference adde

    Parallel finite element density functional computations exploiting grid refinement and subspace recycling

    Full text link
    In this communication computational methods that facilitate finite element analysis of density functional computations are developed. They are: (i) h¿adaptive grid refinement techniques that reduce the total number of degrees of freedom in the real space grid while improving on the approximate resolution of the wanted solution; and (ii) subspace recycling of the approximate solution in self-consistent cycles with the aim of improving the performance of the generalized eigenproblem solver. These techniques are shown to give a convincing speed-up in the computation process by alleviating the overhead normally associated with computing systems with many degrees-of-freedom.The anonymous referees whose comments improved the presentation of this work are gratefully acknowledged. The work was supported by the Polish Ministry of Science and Higher Education N N519402837 and by the Spanish Ministry of Science and Innovation TIN2009-07519 and TIN2012-32846. The resources provided by the Barcelona Supercomputing Center are also acknowledged.Young, TD.; Romero Alcalde, E.; Román Moltó, JE. (2013). Parallel finite element density functional computations exploiting grid refinement and subspace recycling. Computer Physics Communications. 184(1):66-72. doi:10.1016/j.cpc.2012.08.011S6672184

    Multicomponent Bright Solitons in F = 2 Spinor Bose-Einstein Condensates

    Full text link
    We study soliton solutions for the Gross--Pitaevskii equation of the spinor Bose--Einstein condensates with hyperfine spin F=2 in one-dimension. Analyses are made in two ways: by assuming single-mode amplitudes and by generalizing Hirota's direct method for multi-components. We obtain one-solitons of single-peak type in the ferromagnetic, polar and cyclic states, respectively. Moreover, twin-peak type solitons both in the ferromagnetic and the polar state are found.Comment: 15 pages, 8 figure
    corecore